Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Chim Acta ; 554: 117778, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220136

RESUMEN

BACKGROUND AND AIMS: Development of a candidate reference method based on bidimensional liquid chromatography coupled to ESI-MS/MS and double spike isotope dilution for serum creatinine quantification capable of correcting for creatinine-creatine interconversion during sample pretreatment. Study of the impact of the creatine-creatinine interconversion during the analysis of human serum samples. MATERIALS AND METHODS: 13C1-creatinine and 13C2-creatine are added to the serum sample. Separation carried out by bidimensional liquid chromatography combining reversed phase and a strong cation exchange chromatography. The heart cut, containing creatine and creatinine, is automatically transferred to the second dimension. Quantification carried out by double spike isotope dilution tandem MS/MS. RESULTS: Minimization of spectral interferences and ion suppression due to matrix effects while increasing sample throughput compared to the direct coupling of cation exchange chromatography to the ESI source. Trueness of the method studied with the satisfactory analysis of two certified reference materials. Satisfactory intra- and inter-day precisions obtained analysing a serum pool and control sera. Analysis of 93 serum samples revealed negligible interconversions with no correlation with creatine levels. CONCLUSIONS: The method provides adequate analytical figures of merit for serum creatinine determination according to CSLI guidelines. Negligible creatine-creatinine interconversion is promoted with the applied sample preparation procedure.

2.
Mass Spectrom Rev ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37597182

RESUMEN

Epigenetic modifications are closely related to certain disorders of the organism, including the development of tumors. One of the main epigenetic modifications is the methylation of DNA cytosines, 5-methyl-2'-deoxycycytidine. Furthermore, 5-mdC can be oxidized to form three new modifications, 5-(hydroxymethyl)-2'-deoxycytidine, 5-formyl-2'-deoxycytidine, and 5-carboxy-2'-deoxycytidine. The coupling of liquid chromatography with tandem mass spectrometry has been widely used for the total determination of methylated DNA cytosines in samples of biological and clinical interest. These methods are based on the measurement of the free compounds (e.g., urine) or after complete hydrolysis of the DNA (e.g., tissues) followed by a preconcentration, derivatization, and/or clean-up step. This review highlights the main advances in the quantification of modified nucleotides and nucleosides by isotope dilution using isotopically labeled analogs combined with liquid or gas chromatography coupled to mass spectrometry reported in the last 20 years. The different possible sources of labeled compounds are indicated. Special emphasis has been placed on the different types of chromatography commonly used (reverse phase and hydrophilic interaction liquid chromatography) and the derivatization methods developed to enhance chromatographic resolution and ionization efficiency. We have also revised the application of bidimensional chromatography and indicated significant biological and clinical applications of these determinations.

3.
J Hazard Mater ; 448: 130997, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36860062

RESUMEN

Microplastics are one of the major pollutants in aquatic environments. Among their components, Bisphenol A (BPA) is one of the most abundant and dangerous, leading to endocrine disorders deriving even in different types of cancer in mammals. However, despite this evidence, the xenobiotic effects of BPA over plantae and microalgae still need to be better understood at the molecular level. To fill this gap, we characterized the physiological and proteomic response of Chlamydomonas reinhardtii during long-term BPA exposure by analyzing physiological and biochemical parameters combined with proteomics. BPA imbalanced iron and redox homeostasis, disrupting cell function and triggering ferroptosis. Intriguingly, this microalgae defense against this pollutant is recovering at both molecular and physiological levels while starch accumulation at 72 h of BPA exposure. In this work, we addressed the molecular mechanisms involved in BPA exposure, demonstrating for the first time the induction of ferroptosis in a eukaryotic alga and how ROS detoxification mechanisms and other specific proteomic rearrangements reverted this situation. These results are of great significance not only for understanding the BPA toxicology or exploring the molecular mechanisms of ferroptosis in microalgae but also for defining novel target genes for microplastic bioremediation efficient strain development.


Asunto(s)
Chlamydomonas , Contaminantes Ambientales , Ferroptosis , Microalgas , Animales , Biodegradación Ambiental , Plásticos , Proteómica , Microplásticos , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...